N9 15 756
Nasa Ce. 57142

Some one-dimensional problems in a theory of
mechanically and thermally interacting

concimuons nesisC ASE FILE
COPY

by

Charles J. Martin

Department of Mathematics and
Center for Applied Mathematics
Michigan State University
East Lansing, Michigan

December 1, 1968

*The results communicated in this paper were obtained
in the course of an investigation conducted under the re-
search grant NGR 23-004-041 of Michigan State University
with the N.A.S.A. in Washington, D.C.



Abstract

Using a linearized theory for the mixture of elas-
tic solid and viscous fluid, two one-dimensional boundary
value problems are posed and studied.

The first problem is that of a stress-~free halfspace
to the face of which a transient temperature is applied.
The second differs from the first in that its face is con~
strained rigidly against motion.

With the aid of the Laplace transform, solutions of
these problems are given analytically and graphically when
the temperature on the boundary is (a) a delta function,
(b) a step function and (c¢) a ramp load.

A comparison of results using this theory and the

results for the corresponding thermoelastic theory is
made,



step rise applied at t = O.

In contrast with the quasi-static theory in which
the normal (to the boundary) stress is identically =zero,
all references showed that this stress is actually non-
zero and exhibits a discontinuity at t = x, the spatial
coordinate, For the step rise loading, [6] showed the
stress discontinuity to be a jump of constant magnitude
while [9], which incorporated the mechanical coupling
term in the heat conduction equation (ignored in [6]),
showed the jump's magnitude decreased as it was propagated.

In [8], the effect of ty > O was to replace the jump
discontinuity by a discontinuity in the slope of the stress
at t =x and at t =x + to.

In spite of these contrasts, the conclusions of Muki
and Breuer [9] were that except for a very short time in-
terval after application of the thermal loading, and
except for a very thin layer near the boundary, the use
of the quasi-static field equations in transient thermo-
elastic problems gave a reasonably valid estimation of
the stress field, at least for metals.

In this paper we shall consider the effects of inertia
on a mixture of linear elastic solid and viscous fluid in
a half-space to which a point load in temperature is ap-
plied. Once we have found the kinematic and stress fields
due to the point load we shall then consider the ramp and
step loadings. This problem will correspond to the uncoupled
transient thermoelastic problem of [8] and in a subsequent
paper we shall attempt to assess the mechanical coupling
effects.

In section 2 we present the salient features of the
linearized theory of Green and Steel [3] and Steel [4]
for a mixture of isotropic linear elastic solid and vis-
cous fluid. From this, we present in section 3 a
nondimensional set of boundary value problems which are



to be studied.

Steel [4] terms a parameter occuring in the diffu-
sive resistance vector a measure of diffusive force and
we use this parameter as the basis for a perturbation
of the equations of section 3. This procedure comprises
section 4. The undisturbed equations (zero diffusive
force) and the first order theory are solved explicitly
in section 5 with the aid of the Laplace transform.

After inversion, we discuss the stress and kinematic
fields for the ramp and step loadings in section 6.

Application of mixture theories such as [2] to [4]
are found in a variety of problems most notable of which
are the problems dealing with flows in porous media such
as soils and oil bearing rock layers. A similar phennom-
enon occurs in the ablation of heat shields of re-entering
spacecraft in which the rapid temperature rise causes gas
bubbles to flow out of the material.

2. Linearized theory for an isotropic elastic solid and

a viscous fluid.

The theory presented below is essentially that of
Green and Steel [3] for a mixture of elastic solid and
a viscous fluid. We assume that the mixture is chemically
inert and that at each point of the spatial region occu-
pied by the mixture and at each instant of time, there are
material points of each constituent. Thus at each spatial
point we define kinematic and mechanical quantities for
each constituent and, in addition, we define mechanical
and thermodynamic quantities appropriate to the total
aggregate.,

Since we are concerned only with a linearized theory
we shall refer all quantities to a fixed rectangular car-
tesian coordinate system x = (xl,xz,x3) and thus take the
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Lagrangian coordinates as applicable. The assumptions
inherent in this linearization process are that the ma-
terial points of the solid component are displaced
infinitesimally from the initial equilibrium state and
that the components of the fluid velocity vector are
egually small.

We define at time t component densities P1sPs
respectively, solid and fluid. Kinematic quantities
associated with the solid are a displacement vector
w = (wi), a velocity vector a = (ui) = (Bwi/Bt), a

strain tensor e = (ei.), a rate of deformation tensor

J
as= (dij), and a vorticity tensor T = (Fij).* Similarly

for the fluid component we have a velocity vector
N o

v = (vi), a rate of deformation tensor f = (fij) and a

vorticity tensor A= (Aij). Mechanical quantities as-~
sociated with the solid are a partial stress tensor

-
o = (Gij) and a body force vector F = (Fi) while for

the fiuid we shall denote these gquantities by T = (wij)
and G = (Gi), respectively. An additional vector
accounting for the interaction of the components will be
denoted by & = (»;) and is termed the diffusive resis-
tance.

Green and Steel [3] introduce the thermodynamic
quantities, as applied to the total aggregate, by temper-
ature T, specific entropy S, specific Helmholtz free
energy A, and the heat flux & = (qi)

In the remainder of this section we list but do not
re-derive the kinematic relations, the continuity equa-

tions and the field equations for each mixture component.

*a11 subscripts run over values 1,2,3, and, when
repeated indicate a sum on the index over 1,2,3.
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Additionally, we pose the constitutive equations®, the
energy equation and the entropy-production inequality
as given in [1].

Por the solid constituent, the velocity-displacement
and strain-displacement relations are

oy 1
T A A TR P 2.1

and the conservation of mass requires that

p]_ = 51(1 - ekk) (2.2)

where 51 is the uniform initial value of the mass den-
sity of the solid component.

Rate of deformation and vorticity relations for the
solid and fluid components are

= L L -
diy =7 (9 %9y 35 iy -3 (9 470y 5) (2.32)
£.. = l-(v V. ), AL o= l-(v =V L) (2.3a)
ij 2 i3 3,477 i3 2 tUi,) 3,17 ¢ :
To these we also add:
continuity equation for the fluid
%, .
ST+ Py fkk =0 (2.4)
equations of motion of mixture
- _  Ou.
O55,i " Y5t ple = Py 3{1' (2.5a)
_ - v,

*We use constitutive equations as presented in [4].



enerqgy equation

~(= 38 3T
"P(T R Bt) + @ (e - vy
(2.6)

* 9 Yt (9 1301191 Caahie) ek = ©
where p = p; + p,, p being the total density. Barred
quantities refer to values taken at equilibrium. Symbols
f(ij) and f[ij] refer to symmetric'and skew symmetric
components of fij and partial derivatives with respect
to x; are indicated by ,i1 as a subscript.

The constitutive equations to be used are given by

pA = pA + oy pq + az(pz-pz) + a3(T-T), (2.7)
ps = -[a3+a9ekk+alo(p2-52) + a7(T-f)], (2.8)
q; = - kT; - K'(ui"vi)’ (2.9)
5, 5,
1T TS M%kk,n YT aPa,s ANy
ne, T «A .10
* 2"pq Tpapd) (2.10)

53 [0‘ - { 1"“4} exx * {l a +°‘8}(92"52)

+ ag(T—T)]éij + 2(a +a5)e i3

+ Deijk(uk—vk) - D" (rij-Aij) 2 (2-11)

{P"‘P 2

Tig = [‘520‘2"“52 {% cj@z""‘a}ekk - 2y+P %, 6}(92 -Py) +
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- Py (T-T) + A [o, 4 + 2uf,

- DEijk(uk-vk) + D" (l‘ij-!\ij) . (2.12)

In these relations all coefficients represent ma-
terial constants, Gijk is the alternating tensor and
bars refer the appropriate guantities to equilibrium.

To identify the symmetric and skew-symmetric partial
stress components as used in (2.6) with the expressions
(2.11), (2.12) we state that the last two terms of (2.1l1),
(2.12) are skew-symmetric.

The material constants, by virtue of the entropy-
production inequality, are required to satisfy

M >0, 23X >0, @ >0, D" >0, (a"-D)2 < 4op"
k >0, (K')%< 40kT . (2.13)

In addition, by definition of state of equilibrium,
we have that
Gij = aléij’ Trij = - pzdzﬁij, wi = 0, (2.14)

Before considering specific problems we note that
the energy ecquation (2.6), upon substituting (2.7), (2.8),
and (2.14), and using (2.1) to (2.4), becomes

T - _
% 3t t %ok ~ P%0fkk T

f

-T:qk,k. (2.15)

To close out this section we shall quote the unique-
ness theorem presented by Atkin, Chadwick and Steel [1].

Uniqueness Theorem. Let B be a bounded regular region
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of three-dimensional Euclidean space occupied by a mix-
ture of the type just presented in equations (2.1) to
(2.15) . By OB we denote the boundary of B and by
BO the interior region of B. By regions B(ﬁo) we
shall mean all pairs (P,t), such that for ¢ >0, P
is a material point in B(BO). In addition, we take
n to be a unit outward normal on O3B and we use BBl,
BBZ as arbitrary subsets of OB with complements
651, a§2, respectively.

Let, in addition to (2.13), the ., 1<igs

2

satisfy

2
A+ 9 >0, 5 Ay + Qe >0, A <O
2p
__2 ~.. 2
+a, + 5o, >0, (2.16) .

_ ) »
(%‘al - gi'a2+dg S.[al(‘gz" %)+@4+ %’as](é'az+“6>'

Then there exists at most one set of functions ViiPg
of class Cl, and w,,T of class C2 on B which
satisfy (2.4), (2.5) and (2.15) on B8°, (2.1), (2.2)
and (2.3) on B and the following initial conditions
on B at t = O:

4 =9 = 5.+ Py T =T+ Q
Vi T VWi By T Uy, V3 TV, Py S Pyt Py TF .

(2.17)

In addition these functions satisfy the boundary
conditions for t > O:

A
A
u, -v, = Ri’ (013+v )ni = E% on BBl (2.172)



A A
u;, =U;, v, =V, on BBl (2.17b)
- A -
T=T+ 6 on BBl (2.18a)
A -
g0 = F on aBz . (2.18b)

The quantities wearing carets are known functions and the
quantities p,, 52 and T are positive constants. Of
the choices presented in (2.17), (2.18) either BBl, BBz
or their complements may »e empty or the entire boundary.

For the one-dimensional applications to be considered
in the remainder of this paper we shall study the pair
(2.17a), (2.18a) as one problem called problem A, while
by problem B we shall mean (2.17b) together with (2.18a).

Finally we note that although unigueness is guar-
anteed by the above theorem, our application is to a
half-space and we therefore require that regularity con-
ditions at infinity %e imposed upon our stress, displace-
ment and velocity fields.

3. Statement of the problem.

Departing from the indicial notation, let us iden-

tify cartesian coordinates as (x,y,2z) and consider

our body as occupying the region x > O. We assume that
the body is subjected to a time-dependent temperature
field of the form

G = o(x,t) (3.1)

and is constrained to uniaxial motion so that the dis~
placement vector of the elastic solid has components

w = [w(x,t), 0, O] (3.2)



-10-
while the fluid velocity vector becomes

v = [v(x,t), 0, O].

(3.3)

The temperature field © of (3.1) is related to

the temperature T(x,t) by

o(x,t) = T(x,t) - T

T

Substitution of (3.1) to (3.3) into equations
to (2.4) shows that we may write
oy

- v = SV
ey T T;x fx T dx

4 =2 e o w_
x Ot X dtox

- ow
Pl(x:t) = pz[l - -5;{] (]

3p
2 - OV
st (x,t8) +py 55 =0

(3.4)

(2.1)

(3.5)

(3.6)

(3.7)

as the only non-vanishing kinematic relations. In addi-

tion we have that all other strain, rate of deformation

and vorticity components are identically zero.

The constitutive relations (2.10) to (2.12) take the

form
Po% 32, P19 0P
wx - 3 1 9 g + 1-2 axz + a(gg__ v),-
ox )
W =0 =0 .

(3.8)
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Py dw
O'X(X,t) = [2(&14-&5) - (—*“-‘5 - 054)]-5;(-
- a -
+ g T6 + (-§-+ a8>(p2-p2)+al, (3.9
Elal ow
Uy(x,t) = O'Z(X,t) = -(-—E;_—-"-' - a4)-5§
— q -~
+a§T91+(E%-+ GB)(pz—pz) + o4, (3.10)

T = T = T = 0, (3.11)

5 dv - 1%2
'rrx(x,ﬁ = (2“4')\)'5;“‘ pz( —

Sw
N ue)&?
R Y o

- _.a_V_"El-_ X4
wy(x,t) = wz(x,t) = )\ 5% +p2(5 a2—a8 Sx

N -
- "2"‘10'1'9'[“‘"‘5 “2"'92“6](92-;32) ~Pg%ys(3.13)

Ty = T, =T, =0, (3.14)

The equations of motion (2.5) and the heat equation
(2.15), in view of the constraints (3.1) to (3.3), become



FoTe ] 2
X - 0%w

ox b4 1 Btz

or
X _ = ov

= +ow, = Py (3.15b)

- 2 O THK* | 2 P o0y ~T+K"
% 3% 9 3% 2% v _
T tr2” ( = ) 3%t (~20 S5 =0 (3.16)

T

provided (3.4) and (2.9) are used.
To complete our statement of the initial-boundary
value problem we prescribe that for t <O

w(x,t) %g'(x,t) = v(x,0) =0 (3.17)
Py = 52, e(x,t) = 0.

In addition, we require that on the boundary x = O,
either:

(problem A) 6(0,t) = £(t), (3.18a)
Gx(O,t) + WX(O,t) = 0, (3.18b)
aw(Cst)

T v(0o,t) = O, (3.18¢)

or: (problem B)

e(o,t) = £(t), (3.19a)
3
S (0,8) =0, (3.19p)

v(0,t) = O, (3.19¢)
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while as x —> o, we stipulate that

e(x,t), w(x,t), pz(x,t), vix,t), ox(x,t), wx(x,t), oy(x,t)
and . wy(x,t) —> 0. (3.20)
At this point, we find it expedient to introduce

dimensionless variables. To do so, we note that Steel
[4] defines

% Py
51 = =+ ag, 52 =0, - == , B3 = 0,40, (3.21)
(Y Y
o,
_ = i .1 = -3 P1™
Yy = Po% t (- + -)‘11’ Yo = =P+ —
Py P P
wherein he uses the relation
oy = Py, (3.22)
A direct substitution of (3.21) and (3.22) into
(3.9) yields
- Sw ™ -z
ox(x,t) = (Bz+2533) < ag're + Bl(p2 p2)+d1 (3.23)

which, if the material were elastic, would lead us to
3
expect 52+2B3 to play the role of the Lame constants

(A+21) while agf would play the role of (2u+3A)a
where o is the coefficient of linear thermal expansion
of an elastic material, Keeping this in mind we choose
a velocity

B. + 2B
c% S S (3.24)

Py
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which would be the irrotional velocity of sound if the
material were elastic. Since by (2.16), o, <0, we
define

W = — (3.25)

By a dimensional analysis we have that (3.24) is a velo-
city while (3.25) has dimensions of length squared per
unit time. Thus, if we take

2 2
1 e

then a dimensionless x-coordinate and time are given by

2
c.X cL,t
X 1 t 1
g - R R T B et TS smei—— . (3'27)
a m2 3 to mz

Proceeding further, we introduce non-dimensional
partial stresses, solid displacement, fluid velocity,
densities and diffusive force

\
A Oy A w A % A o
0 = me——m—e—— W oz — O = s g =
X BZ+ZB3 ’ a’ ‘0 52+2B3 > Yy Bz+253 !
A To A vto A T
T = B+ 53 s VETZT s Ty T B+, °
>(3.28)
Py=Py P1-Py
n 3 = 3
2 - 1 -
Pa Py
Aok
B2+2f33 J
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In addition, the following quantities are conveniently
grouped:

g2 = 22U+
3
t0(52+2B3)
4 = cng o = pzam‘r
- 3 = 2
1 Bz+2ﬁ3 2 62+2B3
P
£ = -:-2- s
P
Y -p P,
2 A 2 172
8, = ;=% - £0, = z—55— (B, - —%) (3.29)
1 62+263 o) B2+2B3 1 5 ’
s - fa2 PyYy
2° 2 T - 2°
¢ P11
e - T + K! ¢ - Po%yoT + K!
1 -2 e -2 .
a7T a7T

Incorporating all of these changes leads us the
following summary:

constitutive equations

A
0,(8,m = oy + BT 1 q0(8, T+ (1-£) Gy=5,1m,(E,7), (3.302)

A A
P8, M = -5 452 FE (5, +(5,+£6) 3% (8,7

~d,8(8, ) +[ 8,-(1-£) 5y In, (€, ) (3. 30b)
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oee,mn = -fé Sw g
38

52 A

A

GY(g’T) = B +26
A
(e]

P (8T = T, (5

- di@(

equations of motion

-16-

omn,
8, ™) +(1-6) Gy 5g2(E, M)+ ——-—-[ (5,7
- (}(g,»r) ], (3. 30¢)
s¢ (6, M+d,0(5, M+ (1- -£)G —61]n2(€,T)+0 )
(3.309)
(5,M) =5 (5,7 (3. 30e)
2 3 Y 3 E .

A 3%
' = Ty $F+ (£0,+6,) S e, m

A
§,T) + [8, - (1-f)C O]nz(ﬁ,T)-co. (3.30f)

2 at at 2A
A 3w 0 Sw 0 % 2n _ 3w
[Hfogl—F - —— 37+ -~ V+d; 5 - % 3¢ = > 5 (3.31)
(13 1 Py dT
5. A
2% %o w223 oA . 2 dn _ P2 v
6, ==+ —= =+ § - v-d, =g + &, g = —= > (3.32)
l a - ET a 2 hag ag 2 g -~ BT
2 2A A
@ 3B 0w ov _
w2 "3t~ GLdEert 3 T O (3.33)
on A
ov _
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initial conditions
For T < 0, we take

A
wg,m =L (5,m =9, = n,(8,7) =e(§, 1 = 0. (3.35)

boundary conditions

at &€ = 0:
either (e(0,T) = %(T) = iélL
T
A A
() < cx(o, T + wx(o,'r) =0 (3.36)
A
'%er' (O:T) - 9(03 T) - O:
or
e(0,mn = 2(n = £
T
)
() (37 (0,1 =0 (3.37)

-
as £ —> =, 6(5,T), W(E,M, (M, N,(,M, & (5,1,

and #x(g,T) —> 0. (3.38)

We now introduce the approximations to be followed
in the remainder of this paper and call the resulting
equations the full uncoupled theory. In subseguent
reports, equations (3.30) to (3.38) will be studied as

they stand but for a first approximation we postulate that
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(a) the stress components depend upon the fluid
density only through the initial porosity coefficient
f 3

(b) the fluid stress components depend upon the
solid strain only through the initial porosity coeffi-
cient £,

(c) in the heat conduction equation (3.33), the

. 224 2%
mechanical coupling terms, El 3E5T ° 62 F be

ignored, at

(d) the diffusive force parameter :—9- is small,
Py
at
i.e. :—9-< < 1.
Py

Mathematically, the approximations (a) and (b) 1let
us neglect the terms 51n2(§,T), 85M,(8,7) and

)
61 3%'(§:T) in (3.30a) to (3.30f). Approximation (c)
enables us to determine the temperature o(£,T) inde-
pendent of the solid and fluid components and we may

therefore treat ©(£,7) as a known function when solving
(3.31) and (3.32).

4, Perturbation in small diffusive force,

ato
Assume that for —= < < 1,

P

at,.\k
wg,m =) (=2 w (5,7
o P1
- (4.1)
ot .k
oe,m = (=2) v (5,
o F1
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and incorporate these expansions into eqguations (3. 30)
to (3.37) along with the assumptions (a) to (c) of the
last section. Then

at

A = -9
0, (8,T) = 0 (8, T) + —= 0,(§,N+...,
Py
A ato
TG (E,T) = 7 (E,T) + —= 7 (8, +..., (4.2)
Py
A at,
Ww(g, ) = wy (g, + —= w (§,N+...,
Py
provided we define
A Bw
Ol T) = 04 + ag + 4,65 + (1-f) "o“zo’
(4.3)
Bwl
Oy (5,7) = STt 448y 4 (1- f)oonzl,
ov Sw A
= A 2 _0 A O - (1-
Txo(5: ™) = =0 + 8% 55 + £95 55 - ;8 - (1-F) oMy,
(4.4)
ov ow
= 2 _1 ATER S
Tye1 (8:7T) = $% 5z + f9g 3 - 48 - (- ~£) GoMy -
2
9w on
- N O A 20
wy(8,T) = -fo, 32 + (1-f)oy 58 >
(4.5)
2
3w n ow,
A S § Ao 20 . O _
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must satisfy

~

The guantities Wos Vor Moo and 90
2% " 3% %
y—2-—2 4 =2=0
agz BTZ 1 o ?
Bzv ov bol=}
¢4 0 g2 _0 _ 4¢2_0_
agz' oT 2 og
2
d eo ) 890 o
agz o7 s
120 , Jo _
3T E T Vo
while Wes Vs n21 and el
3%, 2w %,
W S SN N o)
agz 372 1 of oT
Bzv ov o6
g4 1 _ a2 1 _ 442 _"1_
agz oT 2 oE
3% %
L__1_,
= M
agz oT
anl . avl _o
oT 3 Y-

are solutions of

(4.6)

(4.7)

(4.8)

?(4. 9)

(4.10)

(4.11)
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For ease of manipulation we have introduced into (4.6)
A - e
and (4.9) the constants Y =1 + foo and 62 = szpz/pl.

To complete the zero and first order prohlems we

require that the functions wj, Vj’ n2j and ©., j=0,1
satisfy the initial conditions
ow

wj = 5;1-= vj = ﬂ2j = ej =0 for t <O, j=0,1 (4.12)

and one of the following sets of boundary conditions:

either
4 A
GO(O,T) = £(1), @1(O,T) =0 (4.13)
Problem A < ij(O,T) + ij(O’T) =0 j=0,1
S (4.14)
37 (0,7 - vi(0,7) =p j=0,1
\.
or
r A
QO(O, T = f(T)J 91(0,"’) = 0, (4.13)
Problem B <
dw .,
-a—fr'l (OJ T) = Vj(O: T} =0, j=0,1. (4.15)
.

In either case, i.e., (4.14) or (4.15), we also ask that

as & approaches infinity, ej, W., V.,

o V40 Majs Oxy 2nd

T j=0,1 all approach zero.

xj’
The technigque employed for the solution of these

eguations is that of the Laplace transform with respect
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to time. Hence, we define

e

AR) =2@@: B = | ePlamar (4.16)

with the inverse relation

a(n) =L @EE: T = 5 Sr‘ P2 (p) dp (4.17)

where T is the Bromwich contour in the complex p-plane.

The application of the transform (4.16) to these
problems is straight forward. Restricting ourselves to
the zeroth order terms we find that solutions of (4.7)
and (4.6) which satisfy (4.13) and the regularity con-
ditions as & approaches infinity may be written (in
the transform plane) as

c:;o("i,p) = E(me s VP, (4.18)

E(p)e S VP

v d,f(ple
Ty (5,p) = By(p)e PEAY - L , (4.19)
VvBlp = Y]

2] - —

_ B S2\/§dzs F(p)e 5VP
Vo (8,p) = Dy(p)e - T (4.20)

provided

f(p) = S e PT 2(1)ar. (4.21)

If (4.1() and (4.20) are to be solutions of problem A
or problem B, then Bo(p) and Do(p) must be chosen so

that (4.14) or (4.15) are satisfied. Thus, if we apply
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(4.16) to (4.14) and substitute (4.19) and (4.20) into

the transformed equations a complete solution of problem
(4.20)

A (in the transform plane) is given by (4.19),

provided
a, (B+1) ¥ (p) a, £ (p)
By (p) = o - ——2 — ,  (4.22)
(B \/P“t\/?’(P"Y) (sz+6) (\/f;‘_‘, \%)p
dr/ﬁ%(p) d25<p>[s%/§'+ s3/7] (2.23)
+ . .
(BB +vM/B(st-8?)

D (p) = —
° (BB + /W) 4/B +/V)

th order partial stresses and fluid density

The zero
(4.20) by means of (4.3),

are then obtained from (4.19),
(4.4) and (4.8), i.e.

G, a-o oy A -

o
5 = 9
Gxo(g’p) T p + g

5 3% %
Teo (5P = - }?’* s? —EQ'(g,p)+f90 3§Q (5,p)
(4.24)
- 4,85(5,p) - (1-£) 3Ty (5,0),
v
nzo(gvsp) = - %3@'9' (8,p) .

By the same procedure the solution of problem B is

obtained if

5 (o d,£(p) b (o dzszg(p) . 25)
P = ’ p) = — " .
° JBle-v  ° (s*-82p

We are now in a position to invert the zerot? order
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displacement, velocity, partial stresses and fluid den-
sity components for both boundary value problems. Before
doing so, we anticipate the requirement of transformed
zeroth order quantities needed to determine the first order
terms in (4.3) to (4.5) and (4.9) to (4.15). That is, to
find ﬁl(g,p) and Gl(g,p) we must solve

2 36
d 2, = _ - ~ 1
(v 2 P YW, (E,p) = pwy(5,p) -V (5,p)-4; 5= (5.P),

- (4.26)

2 3
43 2.\ C a2 3 8. —+
(s 322 Bp) v, (8,p) = -s"(p¥W,(8,p) -V, (8,p) -4, 55~ (5,P),

32 -

(—5 - pe;(5,p) =0, (4.27)
o
- ovy

pn21(§:p) = - _5.5—_ (gsp)) (4.28)

subject to (4.14) in problem A and (4.15) in problem B,
as well as the reqularity conditions as & —> o,
We first note that by (4.27) and (4.13),

él(g,p) =0 (4.29)

so that temperature enters our problems explicitly only
in the undisturbed term éo(g,p) and implicitly through
Go(g,p) and {’:;O({;,p) .

Equations {4,26) have solutions that satisfy the

regularity conditions as & approaches infinity of the
form
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_ 5 , g _EBB./Pp
- . VY  5By(p) VY <2
Wl(g.vp) = Bl(P)e - —— + Do(p)e
2./Y
El(p)e"g*/g (4.50)
p3/2(p-‘() ’ |
e8 /b - B2 3
7, (,p) e © o@shve V¥ ey 7 PVE
v sP; = D,(ple - - e
1 1 s4p~52Y 2B
S ;:‘:1(1§>)e"g % e.51)
+ -
(s%-82) p3/2
in which we have introduced 51(9) defined by
- - pdl dzs2 -
Fl(p) = f(P) p__-Y - 34-62—‘ . (4032)

In these expressions the constants of integration
Bl(p) and Dl(p) are to be chosen so that either (4.14),
for problem A, or (4.15), for problem B, are satisfied.

In so choosing we must use Bo(p) and Do(p) as given
by (4.22) and (4.23) in the A case and (4.25) in the B
case.

For problem A, we apply (4.16) to (4.14) and substi-
tute (4.30) and (4.31) directly. After some algebra we
achieve for ﬁl(i,p) and 51(€,p)



v, (5,p)

v, (8,p)

~26 -

2By
1 -BJpP - -)
= 130(1p)[~ zj‘f+ ) (VY -BvP Y
(BB +v/1 (o= 25Y
Y 45)
Ba/Y 3 - 7\/{;
2, = 2 -\% <
- S ('\/p + S ] e + Bo(p)e
28p(B /P +4/7V)
F, (p) Y _ Y+ Bp
+ _.3'..__13__.____[ B 5 ( >~ + 1) 2( "
—~ v By, s°p p(p
Bvp +vY plp- ;zr)
3 -2 E )
- B2 F. (p) 2 1P
+ s*(s2-p) ]e VY (P 5 e s +—-§72—(—:—Y;-e §\/§’
28p? (s%+B) p3/2(p__ EZ_Y_) j P
S
(4.33)
_ 1 T o -
= B (p) [- %B‘\/P + " 82, (2yYp
(BB +/9) (o= =5
ep :
- %5VP - o
BY =, Y% BT+ e le 27 - "Bo(p’z VA
2VP 2 28(B /B +/V) s2(p- 1)
S
1 /Y g2 st
F : > + Py
+Fuo g ¢ PBVE+v/ VB+yT P stp
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- ‘\/.Y_ 52 - -\/V_ e 2 + e"§ \/p
\/5(54-32) \/5+B‘/7 >] p3/2(s4—f32)
S2
(4.34)
wherein Bo(p) is given by (4.22).
Turning now to probhlem B we find that if
B, (p) D, (p) F, (p)
By (p) = —go— -~ Py - ——— (4. 35)
o (p- 12__ VP (p-Y)
s
2 2%
YB, (p) s“Dy (p) s°F, (p)
sz(p_ x%_) 4pB Vp(s -B%)

are used in (4.30) and (4.31), then (4.15) are satisfied
provided Bo(p), Do(p) are as given in (4.25).

Partial stresses and fluid density can be found by
substituting the displacement and velocity expressions
(4.30), (4.31) into (4.3), (4.4) and (4.11) after inver-
sion has been accomplished.

To conclude this section we make two remarks. The
first is the fact that second and higher order terms may
be found at will by the methods employed here.

The second remark anticipates the fact that these
solutions (4.18) to (4.20) and (4.30) to (4.31) are valid
for any imposed temperature distribution %(T) provided
E(p) exists. If we take E(p) = 1, then the field var-

iables w

0 v., vy, 61’ etc, are those that result from
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a thermal boundary loading of the form

e(0, 1) = 5(T)
and these same guantities can be related to those which
result from any other loading, say ¢(T), by means of a
convolution integral.

Using this fact, we devote section 5 to the inversion
of (4.18) to (4.20) and (4.31), (4.32) when £(p) = 1.

5. Inversion for the case E(p) = 1. Inversion is

readily accomplished with the aid of tables and in terms
of some formulae listed below.

Define
5p 1 -
p—kl '\/fl.'l‘kz] Il(kl:g:T:kz) (5.1)
~Ep
~lie
L ' k,8,T,k) (5.2
- /B -
L - & “/pj I,(ky,8, T,k,) (5.3)
P=%1 /P + X
-k x/“
-l -
E/—-x- k J 14(k1,k2,1') (5.4)
&, /B
b ] - Kysky, T) (5.5)
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where

T=§ kl(T-g—r) 1 kzr .
Il(kl’ g: Tskz) = S e [—:'_: - kze Erfc(kz \/-f) ]drH('l‘_g)

0 Ve

(5.6)
by no. 4, p. 223 and no. 9, p. 242 of [13],
2
T (T-r) -~ %‘E . E+k°r
k -r

13(k1:€371k2) = S e 1 [%T - kze 2 2 Erfc( g

(o] JTE 2,/

+ Ky /F) ]drH(T) (5.7)

by no. 1, p. 229 and no. 12, p. 246 of [13],

Xy
T k1k2+k§¢ X,
14(k1,k2,T) = S - kze Brfc( — + kzx/T), (5.8)
T 27

by no. 12, p. 246 of [13].

Erfc()) is the complimentary error function defined by

@ 2
Erfc(}) = -2 S e™ am (5.9)
VT EA

and is related to the error function &(A) by
Brfc(\) =1 - &()). (5.10)

Some useful properties of these functions (see [14], for
example) are
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Erfc(e) = 0, Erfc(Q) = 1, )
(=) = 1, ¢(0) = o,
> (5.11)
§(-0) = - 3(N),
Erfc(-A) =1 4 ¥(A) = 2 =~ Erfc(h),.

o

and any others will be listed as required.

We invert the zeroth order terms for problem A first
and follow with the first order terms. Problem B is
treated separately.

Beginning with (4.18) (for E(p) = 1), the tempera-
ture field becomes, by means of no. 1, p. 245 of [13],

g _e?2pun
@'O(g,T) = 2\/7_7-_ 1-3/2 e . (5.12)

Equations (4.19) and (4.20) can be inverted directly
after (4.22) and (4.23) are used to replace Bo(p) and
Do(p). In terms of (5.1) to (5.5) we have

d, (B+1) _ v
wo (6,1 = 1 (v, &1 - 21 (0, B 1, MY
VY s“+B VY
- 4,1,(v,8,7,0), (5.13)

and

vo(8,T) = [5(?25) - 2 ] (‘%‘ ér’T)

S
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a 52
a7 For (% o)
2
- E%EEE- I,(8,0,7). (5.14)

To calculate the partial stresses we require nzo(g,T).
Turning to (4.24) we have

ov
7 = -1 _0
Myo(8:p) = - 558 (5,p)
or, what is equivalent,
T Bvo
o (8,7 = - SO 52 (5,n)ar. (5.15)

From (5.14) and (5.3), (5.4) we have

a.p dT —
2 4 LY
- —~ k » s
“20“’”” S {[ 2(1 _B) Sz(sz+5) Bkl ( 1° B 2

dlﬁ 814 a.p o1

+ (K, /Y ,x)+ (k,,0,r)
s2(p-1) Ky 1 v A2 %k 1

2
dzs 614

5 57— (§,0,r) [ dr (5.16)

wherein k, = §B/s2 . Interchanging B/akl and integra-
tion, and using

T
So I,(ky,k,,T)dr = I,(0,k,,T,k,)
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we arrive at

M0(5 M = -3¢ [(Sz T 22 (s24p) 3(0,6, 7, %8

s“(B-1) - =5
S
d232 613
+ A2 3¢ (0,8, 7,0) (5.17)

as the final form for Moo * We note that the integrand
in (5.16) is Bvb(g,r)/aﬁ.

To complete the zero order terms we return to (4.3),
(4.4) and note that all quantities needed to describe
Oy (5,7 and vxo(g,T) are known.

The first order terms are easily inverted although
the algebra is longer. Without further delay, the inver-
sion of (4.33) with the aid of (4.22) gives

4, (B+1) &
wy(5,T) = (a4~ —L~""~—%I1(Y, 2 n ﬁ?@

2B /Y VY
d,8g .
+ (ag* 2 —1, (0, 2 ,T}éz)
2./Y(s“+B)
+ a, I, (Y o1 0) +a, ,I (Qzl- E o 0) +a, .I (Qil g T Al
1371 '\/V l4ls ﬁ ]_5]_34 ’ﬁ,’ﬁ
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Y6 B g /Y
3551307 5 T3 o Ts vV HayeT5(0, 75, T, YE4a
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B B
3T
1 g
+ a,, s— (0,— , T,k vy
21 %k, @72 %>/£2=\%¥
2
0“1 2
1 g YB 45)
a.. =—=— (k,, = , T,k _~ +a,.I (— , 25 ,7,0)
22 aklakz l’wﬁf’ ”;yé;—o 23"3" 4 27
k=L
2° B
+ a,,I (XEE- EB T :ﬂ
2473V 4 7 27 B

g B £p
I (O: s T:O)
s s s2 2773 S2

ox

3 v
* 228 3k, (kl:g:T:?yé | #2,0[T5(Y,8,7,0)-15(0,8,7,0) .. (5.18)
1

Coefficients

215

=Y

a1 ‘to a are listed below.

29
2
d 2 2 2, .2 d,.s“(B+1)
1 s 2 . s (B+1 1 s (s°-B) 2
= —= | = (s“+1+3B (B+M+ + =+ + .
Y [54_52 2B B 2B(s2+f3)] vB (s2-8?)
2 2 2
dl(s -B) (s“+2B) dzs 1 s4(sz+52)

(B+1)
+ 2 - + - ,
282y (s%+B) y(s2+B) ! 28 7 g4(s2p)  B(s2-B) ]

a,s2(B+1) (s*+5p?)

821054 4 B(B+L)
- , & = + d 3
2Bv(s%-?) 14 2y (sp) [ s2-p 2j
B M o -5 T PSR CEr™ P I T L™ T
v(s*-8?) p? ? v(s24p) - s

. 56§52+ﬁ2)] ’

34(32-3)

2
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a,s° (1-48) d, (B+1)

s @ ==, 2
Byv(s?+p) T 7 g 18~ +B) [sz £

s2

+-—-———.—-—-—-—-
25(52+B)

dl(B+1) [ ( +3BJ s‘2_1]
2 s4—62 2 2
BT VY

d, (B+1) d 4
L ( 1 5 + -B—2->(s4+2s262+ -@-2—> s
B2 /T (s2+8) s™-p S

2

4, (B+1) a.s 2 2 5
- l2 e 3 [§5'+ 22 - %’* = ] s
2B° /Y BJ/Y(s“4+B) B (s”-B)
a, /7 a fa 4,8
- AT IOk LA
2B (s2+B) 23 7 ¥ 7 g2(s%p?) 24 = Y(1-P)
~ s4d2
YB‘(s2+B)
4 6
4 L 5% %%
Y- 7 726 yp2(s2ip) T 2T yp2(s%pY)
dzs2
4y, 8,9 = ~ —F—5— . (5.19)

y(s*-8?)
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Proceeding in the same manner with the inversion of
(4.34) we have
d1€
2B ./Y(B-1)

v (8,m = b1, (B - 7, M+ 11,2, VT,

d d —
+ [bs‘ 257 (ﬁ(ﬁil) + >]I4(‘Z% , \éy- )

2
sz+B

da.g 31
+ 2 ) I gB O,T)+b5—‘-1- S—Q-,k T

(= s
4 2~/7(82+5) 4°52 akz s 2

+(b

N

X
U:&i

2
d,s§ oI oI
2 4 EB 3 =
+ ( ’k JT) i +b (Y’ ’T’k )
28 (s*-8?) %k, g2 72 //iz‘o 6 %k, s 3/;;=‘é¥

2
-!-1)9]:3(6 1 ) E%':T:"\/Y) + ’31013(9—% :5% P ‘\/Y)
S S s S
+b..I (BZY 5_@_ T "ﬂ)+b I (.B..El Sé. 1—0)
113 s T3 s B 12%3 4 2 2 2
S . 8 s
8B . LY
4] EB Y EB
014%3(Y, 73 5 T,0)4B, 51500, AT AL N O BV
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EB.
3 2 2

2
T,0)+b B’y & _,T}£Z§+b1911(Y\/“ s }é;

5(0 (&>
1871 RN

7%
l Y

0,8,7,0), (5.20)

-
boo 1(°ﬁ’ T+ +b,I5(Y,5,7,0) =b, ;T 5(

with the bk defined by

dlsz dlsz(B+l) d152(82+1) d252

b= = mm—a——e | b= - T b= - ,

L 4BY(B+D) 2 720 apy1-p)2 7 3 2By (B-1) 2(B+1)  2v(s%+B)

2
d.s

. 2 s 2

b,= ——fe—— | Db_= — = s

4 2v(s?+B) 3 28 /Y [B(B 1) sz+5]
b e a (6+1)\/“ [ 25 (ZS +l)]

6,2 s4.p2

2, .,,2 d, /Y .2
(B+1) (s°+2B“) 1 2 s 2 B

b,=d, /¥ + + =+ =,

7°% 82 (5% p? 52(5-1)] s2.p [52 B sz]

= 2. a2

o d, /Y (2s%4+6%) o 4,8 e - d,B(P+1)

8 283 (s2+B) Y 252(Br1) 100 ,52(1-p) 2

2 .2 a 2 2

: B(B +1) s“+B 2 B s“4y
b "‘d - — e i e

a B da
P12 4 - iﬁ [ 25 "2 ] ;
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. =d [Sz - s (B-l)-i-ZS 5] N d,s 2(8-1)
15702 T BT T Tt B(s*-2)
2 a 4 5
b, = - —S— (d, (s241)+d.), b, = —2—= (V- S—= - S,
14 84‘82 1 2 15 34"’62 262 52+5'
4

b.. = E.]_'._ b = dzs b = 52 dl (64‘1) . -(-i-g)

T8 gsp) C s2-8 B/

To compute the partial stresses Og1s Ty1? and the
fluid density Ny, We reguire both awl/ag and avl/ag.

By (5.18) and (5.20) these guantities are

ow d, (B+1) a d (B+l)§ oI
e I M. T L A
2B /Y VY VY
+ — 2 11(0:— 3T B)"'('_—"*' 2 ) 3C (O)C.’TJﬁ)
2./ Y(s“+B) Y VY 2Y (s°+B) g

A
"B /¢

g
ST

S
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2
-+:§:'QZ EENTARFOPEW: 1(QL"' €, T,0)+a) g1 1(B RS

oI 91

1 Y 1 Y
Il(O’Q’T’o)-’-a]ﬂ a'k (kl’g T\%) X "'Y+a18 '5’}_{; (kl’ Q,T"%—/ -
=
o1, 31 2
1 By
+a (v,C,T +a, ( 7 0Tk, -
19 Bk / /'. 20 akz //k \%‘
BIl
o T, @GN 4

2- B

32

I ) ]
e (k ,6,T,k,)
22 aklbk2 2 k1= . 'S
Y Y
kz‘”%; VY
+ B2 la 1 (YE'2 ¢,T,0)+a (YEZ Q'TV5Q+a (YB ¢, Ta/ V)
22 3C L%2373Y 7 05 2413 R 2513 a0

EB

Y,

+a2613(0,g,"r, )+a2713(o c,T, O):\
C= 2

s

2
31 3
*28 B§Bk (ky 5:7’3y£ _ 20 3¢ [I5(Y,5,7,0)-15(0,8,7,0)], (5.22)
1

and
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d a
1 EB - 1 1
I,(=5 s Y, T) - -
28 /7(B-1) %82 v 2./Y (B(B 1)
A s o
s2,p/ 4,2 B
2
d d.s fe) 4
2 EB 2 4
+ 4 I,(=% ,0,T)+ EE x,,m
2./7(s24p) 2 28(s?-p%) %, 2 *2 A2=o
+§---a-—[b1 (C,= /Y, T+ (b + 9> VI, (C, /Y, T
G2 3G L7174t s 2 28 /7 (B-1) g\>>
4 a
g 1 2, LY
+(b - ( I)I (gs :T)+(b
3 o4 BE-1) © 2,5 "4 'B 4
d2§
+ —=———)1,(C,0,7)
2./Y(s“+B)
d232€ oI, c )
+b g k , Jk ’T
5 ( 2 26(s4—52) 3%k, 2 k=0

g e (1,6, T, (@—l 2o Toky) _
6 Ko™

+b8 (0 C,T,k/ "'b I ,Q, :"'\/—)
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2 2
BTy %y VAT By
+10T3( 7 56T VW 4y T3 (g L TV R) T3 (T 56, T00)

by T4 (Y, TEY +5, T 1 (Y, €, 7,004, 1,(0,C, T

16 3(Y C, Ty /Y) + b17 3(0 ¢, T, O)V "
"'5

2
1 9 BTy RVA «4‘{ 14Y
\/_'—’Y_%'C [b].BIl( s :Q: :5)+b19 1(Y;€ T, )+b20 1(0 g: 6)] g
t= =
/"“Y

+

+b21 5_§—- (vy,€,7,0) - bl? —a'g—' (0,8,7,0). (5.23)

The next step in the process.is to use (5.23) in (4.11),
or its equivalent,

T Bvl
n21(€,7) = -g SE (E,r)dr. (5.24)

(0

The integration of (5.23) is accomplished directly if we
note that differentiation with respect to §, kl’ or k2

may be interchanged with the time integral, and, if we use

r

1
]._E-]T [Il(k]_:g:'rskz) —11(0,§,T,k2] tor klylo,

r
SD Il(kl,g,r,kz)dr = <
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1

T
So I,(ky,8,r,k,)dr =§

Bx
G’k Bers g’T’kz%{=7
1l
So 14(k1,k2,r)dr = I3(O,kl,T,k2). (5.25)
Thus,
a d
1 Ep 1
i (g,T) = - I.(0,%, :‘\/.)"' __(
2 BV (B-1) O s 2 /¥ 5D
d —
EB /Y
)I ( =5 \——)
sz+5 2 P

d,

ge 2 2]
- I (@: E} ) ) (O: :T:k )
2/7(s%4p) 3 g2 2p(s*-p% T2 72 2/‘2=

4

b.s a.g
cB 2 T - —291.(0,¢,7, - /7) + (—= +b
52 e L p2y 377 v 28V (B-1) 2
4
b, ..s
10 16\ >y
- 2 I (*’Jg '\/Y)

By Y
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PSR S B T b13,1 (0,¢, 750
3, P T 28 g2y Y > B
a,z b12s4 b, b,

+(b4_+ - - )13(03 C)TJO)""(bs" T

2 /7(s%4B) By Y

bs' oI

7 3 e
- 2) ak (O:Q)Takz)/
ﬁ 2 /"k 3\5
S 2T B
2
o+ o) T,k + =5 1= I, (v,(,T,k
26 (s2-p2) Sk, ‘CeE T2 k=0 3k, TV *3 2 1%
4
b., s 2
ok SRR
BTy LY
321 /

—3 - AT
+by, 5 Sk, (k;,C,7,k,) + 5 {b1513(k1,C,T,B)

2 /’{l=0 1
Y
k=gt

+ b17I3(kl,C,T,C)}

/
k, =0

4 2

s By B - B 1£Y§

MPEEE L AR A b Tt L IR ST G SR,
2

(B Y

+ by I, ,C,7,0) }



}( {b I3(Y c, T‘Cé)+bl413(Y,C,T,O)+b1613(Y,Q,T,+ﬂ) }]/

C:
L 5 =hyg g2y Y, P10 YA
—"""'a‘"[ 2 I ( :C: )B)+Tll(Y’Q’T’ B)
\/“
- Y
b I.(k ::v“g,’r"\C)
s%p b b
~E2e 4 A1 (0,0, Y | - 2L 5 (1,(v,8,7,0)
BTy (= E_
77
- I3(O’€,T’O))
BZI
+ b (k;,8,7,0) . (5.26)
17 3k Bg k1=0

The partial stresses Tg1s Oy} 2Fe given by

2w, A
le(g:"’) = -a—g—— (E:T) + (l-f)O'O n21(§JT)’ (5.27)

, ow dv
T (8,7 = £0) gk (8,1 + 52 5k (2,71) - (1-£)8, myy (5,

into which (5.22), (5.23) and (5.26) can be substituted
to give the stresses directly.

This completes the inversion of the deformation fields

for the case of a delta function thermal loading and bound-
ary conditions of problem A. The inversion is complete in

g8
2

s
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the sense that these guantities are stated explicitly as
functions of the integrals, Il, 13 and I4 and these

in turn are elementary integrals expressible in terms of
error function.

By an anologous procedure, we invert the zero and
first order terms associated with problem B (for E(p)=l).
Return to (4.19), (4.20) and use (4.25) in them. Then
inverting directly gives

W8, = & (1; (¥, 7,00 - I5(Y,5,7,00), (5.28)
VY
and
§,T) = EZii_ 58 o,T §,0,T) 5.29)
VO(:)—S4_B2(I4(52::)"14(::)0 (-

Fluid density nzo(i,T) is found from (5.15) and (5.29)
to be

2 .
T d,s o1 31 -
» 2 B 4 4 i
Nyn{5,T) = - =5 57 (€,0,r) - (€,C,r) jor
20 SO 4 a2 L2 3T - 8 3T J
s
or,
n (g,T) N Y YA (C - 3F (O,Q,T,G) .
20 4 .2 SZ of e g
2
s
(5.30)
As in problem A,
) 8 oI
A 1 1 3
6 _~(§,T)~0. = 4,|— (v,¢,T,0) - === (Y,E,7,0)
X0 o) 12/7'35" 5 3 ]
/7



45—

(1~f)o d s o1 o1
- [Br gt 0.0 - 522 (0,8,7,0) J:
s —B C 5%

S
(5.31)

oI
o (8 TV 40, = -—§ " [52 st~ (¢,0, T/ o =2 (2,0,m ]
=""2'

11 1
+fo (Y,6,7 (Y g, 7 C)]
oC 3557,
‘\/~ /=

."’3....
\/—-

I S L7

2\/51372
/\o Q__ o1,
+(1-£) 2 [ (0 ¢,7,0) - 3 (0,€,T,0) .|
¢= 3£
8

(5.32)

Equations (4.30) to (4.32), (4.35), (4.36) and (4.25) will
yield

2\/‘
+ 13(k1,§,7,o)>/£ - ]
1
a,s

2 g g
+ I.(v,*~—,T1,0)~-1_(Y,8,7,0)-I. (0, T7,0)+I_,(0,E,7,0)
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4 4

- & I ('—@'—' :S—— T O) + 2 I (Oag——: T:O)
()
d.s
2 Yﬁ §B EB
+ [ ( :T,O) -1 (0, :T,O)]7 (5.33)
YBZ(S4-52) 3 2 2
a,s YB 5 vs &
v (g,T) i S [I (— ’T:O) -1 ( :T:O)
1 st Bz s Y s g2
€
-1 (Y.v—:) T,0) + I (Y.vg)T:O)}
1l N/Y 3
2
d.s - 2
2° ‘ =]
+ {I (0: JT)O) - I (O,g,T,O)]
4 g2 L 4 g2 2 3
§aI
gB
: 2

Returning to (4.3), (4.4) to compute the stresses we
again require Bwl/a§, 3v1/8§ and 1,;. By (5.33) and

(5.34) the first two are

ow BI

1 1 g 3
sF = I,(Y,2=1,0) + (v,6,7,0)
° a7 VU v % /=g
; VY
L ECF——BZI(k ¢,7,0) +—?———6213(k £,7,0) ]
IV, A T4 I Boky LT =

C=8/ Y
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4 2

2
d,s
%C‘ {II(Y;C:T:O) ‘Il(O:Q:T:O)' ";"2" Il(%:gsT’o}

2

R b
v(s*-8% A

+

4

S 2} = .
+ 55 1,00,07 o)} 37 530,80 T, (18,10 ]y (5.39
f‘
2
ov d,s
1 ,. 1 1 YE’
(%,T) = = 11 ( ,QJT:O) -1 (Y g:T:O)
3 s4-52 [\/~ { s* } C= E.
VY
o1 2
3 B3 YB
C= =5
4 s
313
+ 2 [ 4 2 -a—c I (O Q,T,O) gB - E_g“' (O’g’q"o}}
= 5
s
2
oI 0“1
1 4 EB g 4
+———-—-—-—(——— '\‘) + (k,,k,,7T) , .
2 Bk, 1 2 /~:2=o 5.2 3K Ok, 102 kf_g_%_]
s
k2=
(5.36)
We find n21(§,T) by
T Ov
nzl(gaT) = - S 'éf];’ (8,r)ar

"0
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and (5.25) to be

d.s
1 s
‘n (g.’T) -- I
21 84_52 [Y3/252 Y4 {

(YB4,€,T,0) -1, (o, Q,T,O)}

g
w

;’3%5 'g-C" [Il(Y:Q:T:O) - Il(O,g,T,O)% £

VY
+ L2 (1 (v,€,7,0) - 1.(0,€,7,0)1}
Y ag 3viaos ' 3 329 '
2 2
s© 0 Y8 _
- 5 ’5@ { ( 54:€:T:O) I3(O:€:T,O)7 gB ]
C= =
s
2 ~2
d,.s 2l §
2 B 3
- (k :Q:T:O)
s?-p? “5%-p2 8Coky 1 k,=0
EB
(= =&
s2

32

s2 13 " . )
- k - T,O
s4-52 §Eak1 1= //il=o

1_ 9 £ g
+ I1,(0,%5,7,k,) + 1,(0,6,T,k,) .
2B ok, T30 2 2/<2=o w Cak 2 - gg]
S

k2=0

(5.37)

Substitution of these functions into (4.3), (4.4) completes
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the zero and first order solutions of problem B.
6. Examples of temperature loads.

As an application of the results obtained so far let
us consider in some detail the stresses, displacements and

velocities which result when the boundary temperature

A
£(1) 4is the ramp loading

A
£(T) = == H(T,= 7) + H(T - 7() (6.1)
0

where e is a known "loading time",
The relation between Rhe field variables of section 5,
e.qg., wb(g,T), found for £(T1) = &(T) and the response of

the same function due to (6.1) is the convolution integral

* -TA
wo(@,T) = Sof(T-s)wb(g,s)ds (6.2)

where, for purpose of illustration, here wg(g,T) is the
response due to (6.1) and wb(i,s) is the response of the
last section.

Since all of the stresses, displacements, etc., of
section 5 are expressed in terms of the integrals Il’
i, and I,, as defined in (5.1) to (5.8), and their par-
tial derivatives, integrals of the type (6.2) require us
to compute

T A

S; £(T£ ) {1, (ky,8,8%,k,), T50ky,5,t%,k,), I,(k,,k,y,t)late,

in order to obtain the stress and displacement fields due
to the loading (6.1). A
In general then, for a thermal boundary loading £(7)
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we define integrals

Lo (ky, 6,7, ky) = SO £(T-£') I, (ky, 5,80, k,)dt, @ = 1,3 (6.3)
T A
o - '
L0k, Ky, 7) = S; £(r-t') I, (k) ky,t')at

and obtain the response such as (6.2) by simply replacing
the Ia's by the corresponding L, and their partial
derivatives.

For the loading (6.1), in particular, we follow the
scheme just mentioned and define

...pT

0] -
Lo (ky,5,7,%,,7,) =L 1{%—95———-- I, (ky,5,P,k,) ¢ p}a = 1,3, (6.4)
P 7o
and
..TO
L, 0k Ky, T, 7o) = L-l{l:§§—~—-' 14(k1,k2,p);p} (6.5)
P Tq

where we have used (4.16) on (6.1), (5.1), (5.3) and (5.4).
Before proceeding we note that in (6.4) partial dif-
ferentiation of ia with respect to k,, € or k, may
be interchanged with the integration so that for example
..P'T

o oI,

L { Pz,r akl (kl’g’P’k2) H P} = akl La(kl’g’ T’kz’ To) . (6.6)
0]

In addition to (6.4), (6.5) and (6.6), we record here
additional relations that are useful in evaluating the
solutions of section 5.



-51-
From the convolution (6.4) we have
-2, -1

- Il (kl’ €+TO’ T:kz) -11(0, gs T,kz) ]

-1,-1[_ 3
+k]Tg [akl {z, (ky, 847, T,k,) =T, (kq, 8, T,k,) 3 s =o]’
1

for k,,T, nonzero; (6.7)
L.(Q,8,71,k,, T )= - —l—-—gz-[x (k,,8+7.,7T,k,)-I,(k,,8,7,k,)]
1 eI i L o L 2TO akz 1Yy 0 272 110 02 %. =0
1 1

for To honzero (6.8)

Ll(kl,é,T,k2,0)=k;1[11(k1,€,T,kz)-Il(o,i,T,kz)] for k1 nonzeros:
(6.9)

31
1
L1(0,8,T,k5,0) = 5 (kl,g,'r,kz)/k : (6.1C)
1

Formulae for L3(kl,§,T,k2,TO) and the special cases when
kl or T, vanish are of the same form as for Ly if in
(6.7) to (6.10) we replace I1 by I
§+TO,T by §,T-TO,
containing §+T0,T. .

3 and the arguments

respectively, in those integrals I,

Before discussing L,, we note that the integral
Il(kl,é,T,kz), as defined by (5.6), carries the restric-
tion that it is non-zero only if T > §., Similarly, by

(5.7), I3(kl,§,T,k2) is zero if T < O. 8ince, in
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determining L, as explained above,-igtgg{gls of the type
13(k1,€,T—TC) will be encounteréd, it must be remembered
hat such integrals, for npn-zero values, require T > TO'

From (6.5) follows
1 3 - -7,k (6.11)
Lylkyskp, T ) = 7= 5r [T3(6,kp, TX)) -15(0,K, 70, 2V

for TO T nonzero:

L4(kl,k2,T,0) = Ia(O,kl,’l’,kz) . (6.12)

Returning now to the expression (6.2) when (6.1) is

used we have that the response wb(i,T,TO) due to (6.1)
is of the form

d (64‘1) d g \E
.._...__.._.._.1 S.... ‘\ﬂ - .__.2._. e ’q'
WO(gsT:T ) = B8 Ll(y’ﬂ’ T, B ’TO) 52+B Ll(o’\/v" Ty B O)
- dlL3(Y,§,T,O,TO) (6.13)

if the wb(i,T) in (6.2) is the displacement given in
(5.13).

To evaluate (6.13) we use (6.7) to (6.10) for L

and L3. This in turn reguires evaluation of Il, I
and, in other expressions similar to wb(é,T,T ), I

as well as their partial derivatives,

1
3’
4
Equations (5.6),
(5.7) can be evaluated in a straightforward way and are
expressible in terms of the error function and its com-
plement. We do so now,

By (5.6) we have, after an integration by parts,
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»\/.E;_ kl(T"g)
Il(kl’g:T:kz) = - kz—k e Q(m)
2771
k, Kk (7-8) ko kg(T-i)
+ e - ——t e Erfc(k, /7-E)
k2-x k2-x 2
2771 271
if T > § kl,k2 not both zero,
=0 if T < E; (6.14)
B |
I,(0,8,7,k,) =k, [1l-e Erfc(kz,\/'?—?)] if T> &, k, #0
=0 if T & (6.15)

Il(o,fi,'r,o) = —2—;\/7-’?, when T > §
o

=0 when T S_g: (6.16)
g
kl(T__:)

1 e \/kl Erfc( & —Jk?)H(T)

) po— —
2 2(ky+ /Xq) 2./7

IS(kl’ g’ T)k

kl(T+ “E:)
+ — e Erfc( + /K, TYH(T)
2 (k- vK7) 2,7 %

2
k kS T+k, 8
2 e 2 2 Exrfc( 5

-k 2./7

+ k, /TE(T) if K.k,

are not both zero: (6.17)



-54-

2
1,(0,8,7,0) = [-5 Erfc(zj?)+2‘/§e'g ATE(Ty . (6.18)

Additional formulae to (6.14), (6.15), etc.-are re-
qguired, such as their first and second derivatives with
respect to kl,kz,g. As required by need we shall com~
pute them at that point.

A program has been written for the CDC 3600 digital
computer to determine as functions of spatial variable,

€, and time, T, the values of Wi Wys Ve 1,ﬂ20,ﬂ21,cx0,
Os1° 7502 Tx1 and timperature s under the applied
temperature load £(T7) specified by (6.1) for To 2ero

and nonzero., Both problems A and B have been studied.

To program a function such as wb(i,T,To) given
3’ 14 and
their partial derivatives with respect to their arguments.

by (6.13) we required subroutines for Il’ I

Such functions in turn required accurate values of 2(})
and Erfc()). For this purpose we used (see [14]) the
power series

2

, _ -k _ 2n+1 .

g(N) = 2 z T (2n+l) A if A <3 (6.19)
n=0

and the asymptotic expansion for Erfc(A)

2
VT Kek Erfc(}) = 1+ z‘(-l)m 1. 3...(2m-1) when A > 3. (6.20)
(2aH™

m=1
By checking with the tables [15] we were able to maintain

at least 10 place accuracy for all values of the argument.
Input data required consisted of the thermal expansion
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A F )
coefficients dl, dz, the initial stress Y the porosity

f = 52/”, the initial densities 51, 52, the parameter sz,
the diffusive force parameter ato/ﬁl and the loading
time for the boundary temperature,-*o.

To check the validity and accuracy of our solutions
we considered the case when ‘ ‘

90 = 0, 52 = 0, 82 = 0, 4 = -1 (6.21)
which, when used in (3.29) tg (3.35) and the boundary
conditions for problem A, i.e., (3.36), reduces the
exact problem specified there to the transient uncoupled
(Eln€2=0) thermoelastic problems of [6] and [8] if £(T)
is given by (6.1).

If (6.21) is used, the zeroth order solution is
the complete solution and in fact
ow
7 = v, (6.22)

in the region.

The results of [6] show that 0X0(§,T), plotted versus
T for £ fixed, exhibits a jump discontinuity at 7T = E,
By [8] this same stress becomes continuous at T = & and

at T = § + o for ™o >0 but has discontinuous slope

at these points.

It is natural to expect that our results should
approach those of [6] and [8] if one were to choose 4y,
a, s* and 52 near zero. To illustrate this we took as
one set of fluid material properties

d,=0,a=0,8=2,p,=1.1x 1073, (6.23)

A second set of parameters were chosen so that 52 would
be of the same order as p,.



d, =0, @ =0, s =2 52 = 1. (6.24)

For the sets (6.23}), (6.24) the solid material parameters
were taken to approximate the thermoelastic values:
- A -4
d; = -1, Py = 2, Og = 10 . (6.25)

Pefore discussinag and commaring our results with

those of |6] and [8] we begin by showing a plot, in figure
of eo(é,T,T ) at § =1 and for T, =0, 1/2, 1 and 2.
The temperature S5 is the same for problems A and B and,
since it is independent of material properties, is the

same distribution used in [6] and [8].

Turning now to the stress GX0(€,T} - 90 for problem
A we show, in figure 2, the stress at & = 1 for the
parameter valves (6.23) and (6.25). The effect of a non-
zero 52 is to eliminate the jump discontinuity £ound

in [6] for the step loading o = O. In its place we have

a slope discontinuity at T = §/,./Y. The shock front is
no longer plane to the boundary but is rounded as one ap-
proaches from the right.

A . -
The slope of O, (§,T)—00 at T = €+/\/Y changes
continuously from a finite value to infinity whereas the
slope from the left, i.e., as T -> §7/,/Y, is finite,
The overall character is, as expected, like that found

in [6] with the exceptions noted.

When o > 0, the slope discontinuities which occured
in {8] at T =& and T =& + T, disappear in our case
and cxo(g,T) - 04 has a continuous slope at all points.

In figure 3 we plot the same stress using the proper-
ties given in (6.24), (6.25). Here the shock has dissipated
even further for T = and when TO > O the stress is

clearly continuous with continuous derivatives,
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To confrim these results analytically we returned to

(4.3) and substituted for Wss €4 and ﬂzo

sions obtained when (6.1) is the loading. Hence,

the expres-

A Bwb A
cxo(g,'r,“fo) -co== e (8,7, 7 )+dleo(§,'r,'ro)+(1-f) conzo(g,'r,'fo) (6.26)

where by (4.18), (5.3), (5.17), (6.1), (6.7) to (6.10), and
(6.13)

€2

— g2
1 g T =-8°/47T
e (E,7,T) = = [(T+ =) EBrfc( ) -§ . /— e 1H(T)
O TO [ 2 2ﬁ ‘\/W
r L[ e_g2/4(q--¢0)_(_g_§_ 4 T )Erfe(—— |
"o i © 2 o 2./T=T4
H(T-—To) (6.27)
if TO # O;
05 (8,7,0) = Erec( S H(T); (6.28)
2 /7

dw d, (B+1)
EEQ-(g,T,TO) = —!;_.__—.%E-Ll(Y,Q,T?éZ;TO)’
BVY =8/ T

d

2 ) WA
- =557 L (Oag:T: :T)
Sis%g) 96T P °/§=§/«/“v
oL

- 4; 582 (V,5,7,0,7 (6.29)

o):



-58-

a,p
Non (8, Ty Te)= =~ - L(OCT,‘ZI,)
2070 T[( Tam Tt pro
el ( ¢, NATRIN] % L.(0,¢ TOT)]
+ T L ,(0,6,T, /Y, T )+ ——x 3o 'Yy
s2(p-1) 0 gtp? 3 /___ B
dzs2 3L3 s
+ 452 52"'(0’€’T’0’T0)' (6.30)

A long but straightforward computation indicates that
when T, = O, both eo(§,T,O) and nzo(g,T,O) are contin-
uous and differentiable at T =%/,/Y. The discontinuity
in 9/07[¢ O(§ T 0)—00] therefore comes from Bzwo/BTag.

If one expands (6.29) for To = O we have that

5 4 Y(T- 29 Y(T+§_-)
7
-§z~ (5,7,0)= E;-[e VY Erfc(2 gT -/YT) +e Erfc(zi/? + /YT
g
- 2 Brfc( (7)
rfc 2\/%)}H
. Y(T-j_——-) Y(T-%)
Y
O L
1 é—i (T-%) 1 g g
st Erfc(g,/Y(T—ﬁ))}{(‘T— =

ap . T -2 /
s —2—[1-e»  VVereed - 5;)) - 5:) (6.31)
' Y Y

and it is readily confirmed that (6.31) is continuous at
= &/,/Y provided B # 0. By the expression WI(§,§/~/ﬂ
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we shall mean

lim _ 57 (522) = w (5, &. (6.32)
T > g TS t VY
VAl

Thus differentiating (6.31) with respect to T and
taking the limit as 7 .> &¥/./¥ we have

dw a, (B +1) 4, - .
. d o g 1 4 2
lim s \sp—) =W, (8, = + 5 -
T___>§-_"_BT(§> 1 ﬁ) 5[ B sz+3_l
ST
a d, (B+1)
v um {2 (S~ 2 ) - L} (6.33)
€ 5 oF T ‘sH4B Nz

vhich exhibits the discontinuity in slope at T = §/./Y
unless

1 d2 ‘ d1(3+1)>

JTY sz-:-B ) B

= 0, (6.34)

For the parameter sets (6.23), (6.24) and (6.25), (6.34) is
nonzero so that a discontinuity in slope at T = &/./Y is
found.
. . A
Figure 4 is a plot of the stress cxo(g,T) - 0y for the
parameters given in (6.25) and d2’ s and P chosen to satisfy
(6.34): i.e.,

4, = -5-3/7, p, =1, s = 2, (6.35)
- A
a4, = -1, p; =2, oy = 0.1,

As expected, all discontinuities have disappeared and the form

of the response for different R is the same.
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The next set of graphs, figures 5 to 10, are the solid
strain, 5w0/3§, and the fluid rate of deformation component,
Bvo/ai, plotted versus T at & = 1 and for the three
parameter sets (6.23) to {(6.25) and (6.35). As already dis-
cussed the discontinuity in stress slope for o =0 is
due to the strain component, and this discontinuity dies
away when {6.35) is used.

Figure 11 is a plot of the fluid density nzo(g,T,T )
for the parameters (6.23) and (6.25), while figure 12 is
the same function if (6.24) replaces (6.23). The effect of
the thermal loading on the density is to decrease the value
from its initial eqguilibrium value with time so that the
fluid is less dense near the boundary than it was initially.

If one next turns to the parameter set (6.35), then
figure 13 shows that the fluid density, after initially
decreasing for T, = O rapidly increases with T,

O
A
We examine the fluid partial stress on(g,T,T y+0

0
given in figures 14 to 16. Figure 14 is the graph obtained
when 52 ic almost zero, i.e. using (6.23) and (6.25).
Although the stress exhibits the discontinuous slope in

this case at points T = its magnitude is much smaller

T 3
than the corresponding solgd partial stress shown in figure 2.
When (6.24) replaces (6.23), the stress increases ap-

preciably in magnitude, and, with the exception of the
discontinuity in its slope at T = §/./Y for o = 0,
figure 15, the stress is continuous and differentiable with
respect to time.

For a solid fiuid mixture with properties satisfying
(6.35), the fluid partial stress becomes the dominant
stress component and, like the solid stress, is continuous
and differentiable everywhere.

Finally we examine the total stress at § = 1 versus
T for o = 0, .5, 1 and 2, Figures 16 to 18 illustrate
the behavior of dxo(g,T) + WxO(g,T) for the three para-

metric sets chosen in this study.
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Let us now proceed to a discussion of the zero order
terms found for problem E under the ramp loading (6.1).

As mentioned earlier, the thermal distribution of the un-
coupled theory is the same for problems A and B even though
these problems are physically distinct.

The boundary conditions of problem B state that the
half space, § > O, is initially at rest and is constrained
at the face & == O 5o that there is no displacement and no
velocity, fluid or solid, allowed at the boundary. At time
T = 0 the face of the half-space is heated according to
(6.1) and problem B it the study of the reaction of the
half-space to this load.

The defect of the zero order theory is immediately
apparent in problem B. The displacement and fluid velocity
fields, given in (4.,19), (4.20) are physically independent

of each other, i.e., wb(g,T,T depends only upon the

)
solid material properties whigc vo(g,T,To is characterized
by fluid properties alone. The zero order theory for this
problem, as in the corres@onding theory for problem A,
shold tend to the thermoelastic theory as 52, sz, a and
d2 approach zero. This will at least give us a basis for
comparison.

Accordingly, we have plots of BWO/BE and Owo Versus
T for the remp loading (6.1) and for § = 1, Figure 19
is the thermoelastic strain and figure 20 the thermoelastic
stress obtained when p, = g2 = a = d, =0 and when 4, = -1,
Y = 1. Unlike the elastic discontinuities found for the
stress~free half-space problem of [6] and the ramp problem

of [8], our strain znd stress are continuous at T = §,

and at T = § < To- *n fact, the slope discontinuity in
both Bwo/3€ and O, 3t 7= € for Tg = O is of the
type found for prollem A. Again unlike problem A, however,

the strain 0Ow,/3% does not change with 52 or s or

d2 so that the result shown in figure 19 is the same re-
gardless of the fluid properties.
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In problem A we were ahle to obtain a criterion
whereby the slope discontinuity in the solid partial stress
would vanish. This was expressed by equation (6.34). No
such equation can be found for problem B so that the response
shown in figure 20 is typical for all values of 52, s and
d2‘ This again points out the defects of the zero order
theory for the mixture of solid and fluid.

It is reasonable to expect that when the diffusive
for a parameter is nonzero the first order terms will
yield a relation between material properties such as that
found for problem A. This is to be considered in a subse-
quent publication.
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Figure 13. Plot of n,,(5,7,7 ) at £ = 1 for various 7  and

properties satisfying {(6.35).
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Figure 20. Thermoelastic strainr awo/ag at £ = 1 for various

A when dl = -1, ¥ =1,
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Figure 21. BElastic stress at £ = 1 for various T when dl = «1, ¥ =1,



